Indian Statistical Institute
 M. Math 2nd year
 Academic year 2022-2023
 Midterm Examination
 Course: Special Topics in Geometry: Harmonic maps 22-02-23
 2 hours

- Answer as many questions as you can.
- You may use results proved in class, but make sure to state them clearly.
- Maximum marks is 40 .

1. Let $M_{n}(\mathbb{R})$ denote the space of $n \times n$ real matrices equipped with the operator norm, and $G L_{n}(\mathbb{R})$ the subset of invertible $n \times n$ matrices.
(a) Show that $G L_{n}(\mathbb{R})$ is an open subset of $M_{n}(\mathbb{R})$.
(b) Show that the map $f: G L_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R}), A \mapsto A^{-1}$, is differentiable and compute its derivative $D f_{A}: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ at every $A \in G L_{n}(\mathbb{R}) .(2+8=10$ marks $)$
2. Let M be a smooth manifold and let $\gamma_{0}, \gamma:[0,1] \rightarrow M$ be closed curves in M. We say that γ_{0}, γ_{1} are homotopic in M if there is a continuous $\operatorname{map} \sigma:[0,1] \times[0,1] \rightarrow M$ such that $\sigma(s, 0)=\gamma_{0}(s), \sigma(s, 1)=\gamma_{1}(s)$ for all $s \in[0,1]$, and $\sigma(0, t)=\sigma(1, t)$ for all $t \in[0,1]$. Suppose there is a smooth homotopy of closed curves $\sigma:[0,1]^{2} \rightarrow M$ between γ_{0} and γ_{1}.
(a) Show that the boundary of the singular 2 -cube σ is given by $\partial \sigma=$ $\gamma_{0}-\gamma_{1}$.
(b) Hence show that if ω is a closed 1-form on M then $\int_{\gamma_{0}} \omega=\int_{\gamma_{1}} \omega$. ($4+4=8$ marks)
3. Let M, N be a smooth manifolds and let $H: M \times[0,1] \rightarrow N$ be a smooth homotopy between smooth maps $f, g: M \rightarrow N$, so that $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$ for all $x \in M$. Let $P: C_{k}(M) \rightarrow$ $C_{k+1}(N)$ be the associated prism operator, such that for any singular k cube $c:[0,1]^{k} \rightarrow M$ in M, the singular $(k+1)$-cube $P c:[0,1]^{k+1} \rightarrow N$ in N is defined by

$$
(P c)\left(t, x_{1}, \ldots, x_{k}\right)=H\left(c\left(x_{1}, \ldots, x_{k}\right), t\right),\left(t, x_{1}, \ldots, x_{k}\right) \in[0,1]^{k+1}
$$

(a) Show that

$$
\partial P c=(g \circ c-f \circ c)-P(\partial c)
$$

for all singular k-cubes c in M.
(b) Show that there is a linear map $P^{*}: \Omega^{k+1}(N) \rightarrow \Omega^{k}(M)$ from $(k+1)$ forms on N to k forms on M such that

$$
\int_{P c} \omega=\int_{c} P^{*} \omega
$$

for all singular k-cubes c in M and for all $(k+1)$ forms ω on N.
(c) Suppose that $M=N, g=\mathrm{id}_{M}$, and f is a constant map. Show that any closed form on M is exact. $(6+6+6=18$ marks $)$
4. Let E be a smooth vector bundle of rank k over a smooth n-manifold M. Let ∇ be a connection on E and let $\tilde{\nabla}$ denote the induced connection on the dual bundle E^{*}. Let $\gamma:[0,1] \rightarrow M$ be a smooth curve, and let $\frac{D}{d t}$ and $\frac{\tilde{D}}{d t}$ denote covariant differentiation along the curve γ for the bundles E and E^{*} respectively.
(a) Let s be a section of E along γ and let α be a section of E^{*} along γ. Show that

$$
\frac{d}{d t} \alpha(t)(s(t))=\frac{\tilde{D} \alpha}{d t}(s(t))+\alpha(t)\left(\frac{D s}{d t}\right)
$$

(b) Let $P: E_{\gamma(0)} \rightarrow E_{\gamma(1)}$ and $\tilde{P}: E_{\gamma(0)}^{*} \rightarrow E_{\gamma(1)}^{*}$ be the parallel transport maps along γ for the bundles E and E^{*} respectively. Show that $\tilde{P}=\left(P^{*}\right)^{-1} .(6+6=12$ marks $)$

